- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Wigal, Michael C. (2)
-
Yu, Xingxing (2)
-
Farhadi, Majid (1)
-
Gupta, Swati (1)
-
Sun, Shengding (1)
-
Tetali, Prasad (1)
-
Wigal, Michael C (1)
-
Yoo, Youngho (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost$$f(\cdot )$$ due to an ordering$$\sigma $$ of the items (say [n]), i.e.,$$\min _{\sigma } \sum _{i\in [n]} f(E_{i,\sigma })$$ , where$$E_{i,\sigma }$$ is the set of items mapped by$$\sigma $$ to indices [i]. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata et al. (in: APPROX, 2012), using Lovász extension of submodular functions. We show a$$(2-\frac{1+\ell _{f}}{1+|E|})$$ -approximation for monotone submodular MLOP where$$\ell _{f}=\frac{f(E)}{\max _{x\in E}f(\{x\})}$$ satisfies$$1 \le \ell _f \le |E|$$ . Our theory provides new approximation bounds for special cases of the problem, in particular a$$(2-\frac{1+r(E)}{1+|E|})$$ -approximation for the matroid MLOP, where$$f = r$$ is the rank function of a matroid. We further show that minimum latency vertex cover is$$\frac{4}{3}$$ -approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest.more » « less
-
Wigal, Michael C.; Yu, Xingxing (, Journal of Combinatorial Theory, Series B)
-
Wigal, Michael C.; Yoo, Youngho; Yu, Xingxing (, Journal of Combinatorial Theory, Series B)
An official website of the United States government
